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ABSTRACT 
 

In this paper, an explicit time integration method to determine the linear response of 

arbitrary structures subjected to dynamic loading is proposed. The total time of dynamic 

loading is divided into several time steps. For each two time steps, in modeling the 

acceleration over time domain, a second order polynomial with three unknown parameters is 

assumed. Validity and effectiveness of the proposed method is demonstrated through two 

examples where the results of this method are compared with those numerical methods. In 

this method, over two steps, six unknown responses (three responses for each time step) 

consisting of two displacements, two velocities and two accelerations are computed. This 

property reduces the computational cost of the proposed method as compared to Central 

difference, Houbolt, Newmark (linear and average), Wilson  etc. Furthermore, accuracy of 

the results obtained from the proposed method is better than other methods for single and 

multi-degree of freedom systems. Hence, as advantages of the proposed method, this method 

has appropriate convergence, accuracy and low computational time. Therefore, the novelty 

of this work is that for very small values of t , this method is more precise and less time 

consuming rather than other existed methods. This is a useful instrument for the analysis of 

dynamic systems with very small values of t  under earthquake loading. 

 

Keywords: Linear dynamic response analysis; explicit method; accuracy; stability. 

 

 

1. INTRODUCTION 
 

Solving the differential equation of motion governing single degree of freedom (SDOF) and 

multi degree of freedom (MDOF) systems can be done through various methods. Since the 
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applied loads are not specific mathematical functions, numerical methods seems to be only 

option for solving such differential equations. Time integration methods are well suited for 

linear problems in structural dynamics and for dynamic analysis of very large structures in 

which the equilibrium equations are solved at discrete times. In fact, they are a solution of a 

set of equilibrium equations over each time step. It can take a significant amount of time to 

solve structural systems with large degrees of freedom. Thus, today, we are mostly 

interested in those numerical methods, which not only provide acceptable accuracy and 

stability, but also solve a problem in fastest possible time. Simulation of a complex dynamic 

system requires a highly efficient algorithm for time integration, with high accuracy and 

limited amount of computation. These requirements have attracted many researchers [1-2]. 

In general, there are two fundemantal classifications for step-by-step integration method. 

One is explicit [3-7] and the other is implicit [8-12]. In the explicit method, the equation of 

the current time step is not utilized in determining the current step displacement while it is 

implicit if that is involved [13]. One of the best advantages of the explicit methods is that in 

these methods, it is unnecessary to solve a system of equations for each time step, hence less 

storage is required as compared to the implicit methods [14]. Almost all of the explicit time 

integration schemes are conditionally stable and a few are unconditionally stable; however, 

consistency is conditional, which is the major disadvantage of explicit methods. For wave 

propagation and shock response, the explicit algorithms such as the Central Difference 

method, the Runge-Kutta method and so on are very efficient since implementation of an 

explicit method is much simpler than an implicit method for performing pseudo-dynamic 

tests [3-15]. 

To determine the response of a dynamical system subjected to the external loading, one 

can formulated the equations of motion into two domains: 1- in the time domain and 2- 

frequency domain analysis. It is important to note that the response analysis procedures 

whether formulated over time domain or the frequency domain, involve evaluation of many 

independent response contributions that are combined to obtain the total response. In time 

domain procedures (Duhamel integral), the loading P(t) is considered to be a succession of 

short-duration pulses, and the free vibration response to each pulse becomes a separate 

contribution to the total response at any subsequent time [16].  

Step-by-step procedures are another general approach for dynamic response analysis. 

There are many different step-by-step methods in which the loading and the response history 

are calculated in a step from the existing initial conditions (displacement and velocity) at the 

beginning of the step and the load history during the step. Thus, the response for each step is 

an independent analysis problem, and there is no need to combine response contributions 

within the step [16]. 

In Ref. [17], Heidari and Salajegheh presented an approximate dynamic analysis method 

to determine the responses of the structure by using Fast Wavelet Transform (FWT). In Ref.  

[18], Liu et al. presented an efficient time-integration method for obtaining reliable solutions 

of the transient nonlinear dynamic problems.  

In Ref. [19], Rostami et al. presented a scheme where the cubic B-spline method was 

developed for Multi-Degrees Of-Freedom (MDOF) systems. In this proposed approach, a 

straightforward formulation in a fluent manner was derived from the approximation of the 

response of the system with a B-spline basis. 
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In Refs. [20-22], the method which was proposed by Bathe, Bathe and Baig and Bathe 

and Noh which is referred to as the Bathe method is presented to calculate the response of 

linaer and nonlinear dynamical systems with high precision.  

A comparison between Bathe and Newmark methods based on dispersion properties of 

the Bathe method reveals that the desired characteristics obtained by Bathe method in the 

solution of wave propagation problems are extremely significant [23]. 

In Ref. [24], Liu employed the piecewise Birkhoff interpolation polynomials and the 

modal superposition method for the solution of dynamic response of MDOF systems. In this 

paper, each loading is represented by a piecewise polynomial that reduces the computational 

effort when is compared to the traditional step-by-step integration solution technique.  

In this research, an explicit time integration method is proposed to determine the linear 

response of arbitrary structures under dynamic loading. In this method, a second order 

polynomial is used to model acceleration over time domain. The time step is divided into 

two sub domain and the unknown coefficients in acceleration function are determined by 

applying proper conditions. Since the time step is divided into two sub domains, hence for 

each step, there are six increments including two acceleration, two velocity and two 

displacement increments. Using time integration, the velocity and displacement functions 

are computed. Consequently, for each step there are two velocity and two displacement 

increments. Over each step, the acceleration and velocity increments are related to the two 

displacement increments as well as the acceleration, velocity and displacement values at 

beginning of the time step, which are known. Hence, by constructing a system of equations 

and solving them to determine the displacement increments, all unknown values are 

computed. This method is presented for SDOF and MDOF systems. It is important to note 

that all of the methods are compared based on developed programs in MATLAB software 

and run by the same computer. Also, for all different methods, the calculation time to 

compute the responses of the structure have been measured without considering the required 

time for reading the input data and are compared with each other. Validity and effectiveness 

of the proposed method are demonstrated with two examples for which the results of this 

method are compared to those from other existing numerical methods. In this method, for 

each step, six unknown responses consisting of two displacements, two velocities and two 

accelerations are computed. 

 

 

2. PROGRAM FORMULATION AND SOLUTION  
 

The equations of motion for MDOF systems are most easily formulated by directly 

expressing the equilibrium of all forces acting on the masses using D’Alembert’s principle. 

In the case of MDOF systems and linear dynamic analysis, it can be written in the matrix 

form as follows: 

 

          M X + C X + K X = P  (1) 

 

where  M , C , K , X , X , X  and  P  are respectively the mass matrix, damping 



R. Kamgar and R. Rahgozar 

 

 

788 

matrix, lateral stiffness matrix, acceleration vector, velocity vector, displacement vector and 

external load vector for a MDOF system. For the sake of simplicity, the structure is 

considered as a SDOF system. The incremental equilibrium equation at time t can be written 

as follows: 

 

m Δx +c Δx + k  Δx = ΔP  (2) 

 

The step-by-step integration procedures can now be modified into an incremental form. 

Lets assume that distribution of acceleration is a second order polynomial function over two 

time steps as shown in Fig. 1. 

 

 
Figure 1. Distribution of acceleration over two time steps 

 

Thus, the equation for acceleration over two time steps can be written as follows: 

 
2

x(τ) = a τ +b τ +c         0 τ 2 Δt   (3) 

 

By substituting the conditions at times t - Δt , t  and t + Δt  into Eq. (3), the constants a, 

b and c can be determined as follows: 

 

   

                                 

t -Δt t t+Δt t t -Δt t+Δt

2

t -Δt

x - 2 x + x 4 x - 3 x - x
a = , b =

2 Δt2 Δt

c = x

 (4) 

 

By integrating over time domain from Eq. (3), and considering relations                            

( t t -Δt
(1)

x = x + Δx , 0 τ Δt 
 
and t+Δt t

(2)
x = x + Δx , Δt τ 2 Δt  ), one can obtain: 
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     

     

3 2

(1)

3 2

(2)

a b
Δx =  Δt +  Δt + c Δt    

3 2

7  a 3 b
Δx =  Δt +  Δt + c Δt       

3 2

 (5) 

 

By considering relations ( t t -Δt
(1)

x = x + Δx , 0 τ Δt 
 

and

t+Δt t
(2)

x = x + Δx , Δt τ 2 Δt  ), the same procedure is used for displacement and the 

following equations are determined: 

 

       

       

4 3 2 t -Δt
(1)

4 3 2 t -Δt
(2)

a b c
Δx =  Δt +  Δt +  Δt + x  Δt

12 6 2

15  a 7  b 3 c
Δx =  Δt +  Δt +  Δt + x  Δt

12 6 2

 (6) 

 

Considering Eq. (6) and the relations for acceleration (
t t -Δt

(1)
x = x + Δx , 0 τ Δt 

 
and t+Δt t

(2)
x = x + Δx , Δt τ 2 Δt  ), 

(1) (2) (1)
Δx ,Δx ,Δx

 
and (2)

Δx  can be obtained as 

follows: 

 

 

   

 

t -Δt
t -Δt

(1) (1) (2)2

t -Δt t -Δt
(2) (2) (1)2 2

(1) (2) (1) (1) (2)

t -Δt

(2) (2) (1)

3 3 x
Δx = Δx + Δx - x +

2 Δt4Δt

15 81 9 33
Δx = Δx - Δx + x + x

2 2Δt4Δt 4Δt

Δt Δt
Δx = Δx - Δx + 3Δx - Δx

6 4

         + Δt x

7Δt 3Δt
Δx = Δx - Δx + × 3Δ

6 4

 
 
 

 (1) (2)

t -Δt

x - Δx

        + Δt x

 (7) 

 

Using Eq. (7), the parameters  (2) (1)
Δx - Δx

 
and  (1) (2)

3 Δx - Δx
 
can be computed 

and then by substituting them into Eq. (1), for an arbitrary system of MDOF, the following 

relation can be obtained in matrix form as follows: 
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 

 
 
 

     

   

   

     

ˆ

ˆ

(1) (1)N ×111 12

21 22 2N ×2N (2) (2)N ×1 2N ×12N ×1

11 N ×N N ×N N ×N2

12 N ×N N ×N2

21 N ×N N ×N2

22 N ×N N ×N N ×N2

Δx ΔPK K
=

K K Δx ΔP

3 17
K = M + C + K    

8Δt4Δt

3 1
K = M + C  

8Δt4Δt

81 61
K = - M - C     

8Δt4Δt

15 19
K = M + C + K

8Δt4Δt

   
     

    
     

  

 (8) 

 

where N is the number of degrees of freedom in the system being studied and: 

 

         

     

         

     

     

     

ˆ

ˆ

t -Δt t -Δt
(1) (1)N ×1

t -Δt t -Δt

t -Δt t -Δt
(2) (2)N ×1

t -Δt t -Δt

(1) (t) (t -Δt)N ×1

(2) (t+Δt) (t)N ×1

3 3
ΔP = ΔP + M x + M x

2 2Δt

9 Δt
                 + C x + C x

4 4

9 33
ΔP = ΔP - M x - M x

2 2Δt

21 5Δt
                  - C x - C x

4 4

ΔP = P - P

ΔP = P - P    

 (9) 

 

To compute the response of a MDOF system, the values of  ˆ
(1)

ΔP
 
and  ˆ

(2)
ΔP can be 

determined using Eq. (9) and therefore by replacing them into Eq. (8), the incremental 

displacements can be computed. Finally by using Eq. (7), the incremental values of velocity 

and acceleration will be computed and replaced into Eq. (10) to compute the values of 

displacement, velocity and acceleration at times t  and t + Δt . 

 
t t -Δt t+Δt t

(1) (2)

t t -Δt t+Δt t
(1) (2)

t t -Δt t+Δt t
(1) (2)

x = x + Δx   x = x + Δx

x = x + Δx   x = x + Δx

x = x + Δx   x = x + Δx

 (10) 
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3. EVALUATION STABILITY OF THE PROPOSED METHOD  
 

In direct integration, Eq. (1) is integrated using a numerical step-by-step procedure, the term 

“direct” implies that prior to numerical integration, there is no transformation of the 

equations into a different form. In essence, direct numerical integration is based on two 

ideas. First, instead of trying to satisfy Eq. (1) for all time, it tries to satisfy Eq. (1) at 

discrete time points by Δt increments. The second idea for a direct integration method is 

based on a variation for displacements, velocities, and accelerations within each time 

interval. The form of variations in displacement, velocity, and acceleration determines the 

accuracy, stability, and cost of the solution procedure [13]. 

It is assumed that the displacement  0
x , velocity  0

x , and acceleration  0
x vectors 

at time t=0  are known and the solution of Eq. (1) is required to be obtained from time 0 to 

time T. Since the algorithm calculates the solution at the next required time from the 

solution over previous time interval, it is assumed that the solutions at times 0, Δt , 2Δt ,

3Δt , …, t - t  are known and the solution at times t and t + t  is required next. Then for 

the proposed integration method, it is desirable to establish the following recursive 

relationship: 

 

 ˆ ˆt+Δt t -Δt t+ν
X = A  X + L r  (11) 

 

where ˆt -Δt
X  and ˆt+Δt

X  are vectors storing the solution quantities (displacements, 

velocities and accelerations) and 
t+ν

r  is the load at time t +ν . Matrix A and vector L are 

the integration approximation and load operator, respectively. Also matrix A is known as the 

amplified matrix [13]. 

Stability of an integration method can be determined by examining the results of a 

numerical solution for different initial conditions [13]. 

The equilibrium equation of an arbitrary system with SDOF at time (t + Δt ) can be 

written as follows: 

 
t+Δt

t+Δt t+Δt 2 t+Δt
n n

P
x + 2 ζ  w  x +w  x =

m
 (12) 

 

It is be noted that for evaluation the stability of time integration method, it is assumed 

that there is no load on the SDOF system (P=0) and therefore as a result r=0 [13]. 

To investigate stability of the proposed method, at first, it is required to find the 

amplification matrix, thus constructing a relation in which the values of responses at the end 

of each time step are written in terms of values at the beginning of time step. For stability 

analysis, one examines eigenvalues of the approximation operator or amplification matrix A; 

which in general is a non-symmetric matrix.  

Over each time step, ( t - Δt to t + Δt ), by substituting Eqs. (7), (8) and (10) into Eq. (12), 
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and assuming that ζ = 0 , (damping ratio
cr n

C C
ζ = =

C 2mω
) one obtains: 

 
t+Δt t -Δt

t+ν1 2
t+Δt t -Δt

3 4

L Lx x
= + L r

L Lx x

       
    
       

 (13) 

 

where: 
 

3 2

1 * *

3 2 2

2 *

2 2

3 * *

2 3

4 * *

* 2 4 2 2

15m 2160 m 828 m Δt
L = - + +     

Δtk Δt  I k I

4m 432 m 396  m Δt
L = - + +

*k I k I  

432 m 792 k  m Δt
L = - - + 4    

I 2 I

144 m  Δt 312 k  m Δt
L = - + Δt

I 2 I

I = 8 k Δt + 36  k  m Δt +144 m

 
(14) 

 

The integration of Eq. (14) is needed when the load is not specified; i.e. r =0 [13]. 

Stability analysis can be performed by solving for the eigenvalues of amplification matrix. 

The eigenvalues and eigenvectors of A are calculated using        A - λ I Φ = 0 . It is now 

possible to write A in terms of its eigenvalues and eigenvectors      
-1

A = λ Φ Φ . Here, 

columns of  Φ are eigenvectors of A, and  λ is a diagonal matrix holding eigenvalues of A. 

 

1 2

3 4

L L 1 0
det - λ = 0

L L 0 1

    
    

   
 (15) 

 

From Eq. (15), one can obtain: 

 
2

a λ +b λ +c = 0    (16) 

 

where: 
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2
n

4 4 2 2
n n

4 4 2 2
n n

1
a = 1.0     c =      

ω

-2 ω Δt + 60 ω Δt - 144
b = Δt

2 ω Δt + 9 ω Δt + 36

 


 
 
 
 

 

 

Now, in order to have a stable solution, norm of every element in  λ should not be 

greater than unity; 

 

   1 2ρ A = max λ , λ 1  (17) 

 

where: 

 

1 2

-b + Δ -b - Δ
λ =          λ =

2a 2a

 

 
 (18-a)  

 

and 

 

 
ˆ

ˆ

ˆ

8 10 6 8 4 6
n n n

2 4 2
n 2

n

8 8 6 6 4 4
n n n

2 2
n

4 ω Δt - 256  ω Δt + 4032 ω Δt
Δ =

I

5184
-18180 ω Δt +18144Δt -

ω
     

I

I = 4 ω Δt + 36  ω Δt + 225  ω Δt

     + 648 ω Δt +1296

 
  
 

 
(18-b) 

 

In Eq. (17),  ρ A  is the spectral radius, which is a function of time step length  Δt  and 

properties of the system such as k and m. Even though the spectral radius slightly changes 

with variations in damping ratio, the damping ratio is assumed to be zero in constructing the 

amplification matrix. 

Considering Eqs. (16), (18-a) and (18-b), coefficients a   and c  are always positive, 

furthermore, value of the spectral radius is a function of the value and sign of coefficient b 

and    
2

Δ = b - 4 a c  
 
parameter.  

Since nT
 
is the natural period in SDOF systems and the lowest natural period in MDOF 

systems, hence, n  is the undamped natural circular frequency in SDOF systems and the 

largest undamped natural circular frequency in MDOF systems. These parameters are related 

through n nω = 2π / T . 
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In addition, considering Eq. (18-b), the denominator is always a positive value, hence, the 

roots and sign of the Δ parameter is a function of the numerator. As can be seen from Eq. 

(18-b), the roots of Δ parameter is a function of structural property ( nω ) and incremental 

time ( Δt ). Based on this formulation, it is difficult to find all roots of Δ  parameter and 

signs of them over the positive domain of real numbers. By having the largest natural 

frequency for a given structural system, it is easy to find the positive real roots of the 

numerator of Eq. (18-b) (which is a polynomial of order ten ) hence, one can determine the 

sign of Δ parameter over the domain of positive real numbers. For Δ parameter, two of the 

positive real roots are always  n0.7913 / 
 
and  n3.7913 /  . 

Thus in general, by having the maximum natural frequency of a structure, and by using Eq. 

(18-b), one can obtain other roots and sign for the Δ parameter over different time intervals. 

By considering Eqs. (16-18), the spectral radius can be calculated and the maximum Δt

is obtained so that the spectral radius is less than one. Now, one can plot the values of 

spectral radius for the various structural properties ( n ) and various incremental times. 

Also, those domains whit values less than one can be computed. The spectral radius can be 

calculated from Figs. 2a and 2b. 

 

 

 
Figure 2. The values of spectral radius of proposed method for various natural frequency 

between a)  nω = 1  to 2  and b)  13nω = 7   to  
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4. EVALUATION OF ERRORS FOR THE PROPOSED METHOD  
 

There are undeniable errors in the any numerical solution of the equation of motion [26]. For a 

numerical step by step procedure, quantify the difference in computed displacements with the 

exact displacements in a free vibration problem, is a common method that is used to gain 

insight into the magnitude of error. An undamped SDOF system under initial displacement 0x  

and initial velocity 0x  has a cyclic response with a constant maximum amplitude 
max

x(t) and 

constant period  0T which is equal to 2π ω . The maximum amplitude is equal to: 

 

2

2 0
0max

x
x(t) = x +

ω

 
 
 

 (19) 

 

There is two definitions of error for free vibration problems: (a) amplitude decay and (b) 

period elongation [13]. Since the SDOF systems are assumed to be undamped, therefore any 

computed displacement by using a numerical method is named as computed error. This error 

is reported as ‘algorithmic damping’ [2]. In this paper, amplitude decay is called the 

algorithmic damping. The second type of error is referred to as period elongation and 

measures the extension in the time period which takes to complete each cycle of harmonic 

response [26]. 

In this way to investigate accuracy of the proposed method, an undamped SDOF system 

with the considered initial condition is assumed as follows:  

 
2

2
0 0 0

x(t) + ω x(t) = 0,

x = 1;   x = 0;   x = -ω





 (20) 

 

The exact solution of Eq. (20) is x = cos (ω×t) . The response is calculated through a 

numerical method and compared to the response that is obtained from the exact solution. 

Therefore, the two types of errors are calculated based on 0t T variations. For comparison, 

the results are shown in Fig. 3. This type of Figures can be found in many references such as 

(Bathe [13], Chopra [26], Kelly [27], Hughes [28] and Rostami et al. [29]). In general, the 

data in Fig. 3 shows that for integration methods, the magnitude of one or both error 

measurements usually rises with an increase in time-step t [28]. Meanwhile, for the 

specified time step t , the magnitude of one or both error measurements is greater for short-

period SDOF systems rather than the long-period SDOF systems [29]. As graphs show, the 

proposed method shows a low rate for both types of errors. 
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Figure 3. Accuracy investigation of amplitude decay and period elongation 

 

 

5. EVALUATION ACCURACY OF THE PROPOSED METHOD  
 

In this section, validity of the proposed method is confirmed with examination of several 

results. Two examples for lumped mass structures are considered, including a SDOF and a 

two dimensional shear building. To illustrate the accuracy of the proposed method, at first, 

an SDOF system with following properties is considered: m=0.2533 (N.sec2/m), k=10 (N/m), 

Tn=1 (sec) (wn=6.2832 (rad/sec)), and ζ = 0.05 . Response of the system in terms of 

displacement and acceleration are determined when the system is subjected to the 
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5πtP(t) = 10 sin( ) (N)
3

(a half-cycle sine pulse force) by (a) using the proposed method with 

t = 0.1 (sec) , (b) evaluating closed form solution and (c) comparison to other numerical 

time integration methods such as Houbolt, Central difference and Newmark (linear and 

average) method with t = 0.1 (sec). The value of t  is considered to be the same for all 

methods to investigate and show the accuracy and precision of the proposed method. Results 

are shown in Tables 1 and 2. As shown in Tables 1 and 2, the results of the proposed method 

is fine rather than the other methods with respect to the theoretical values. 

 
Table 1: Differences between the methods in evaluation of displacement (m) 

Time 

(sec) 

Newmark 

(linear 

acceleration) 

Newmark 

(average 

acceleration) 

Central 

difference 
Houbolt 

Proposed 

method 
Theoretical 

% error in 

proposed 

method with 

theoretical 

method 

0 0 0 0 0 0 0 0 

0.1 0.02998 0.04367 0.19138 0.02998 0.03482 0.03280 -6.16 

0.2 0.21933 0.23262 0.62933 0.21933 0.23655 0.23317 -1.45 

0.3 0.61661 0.61207 1.18248 0.56177 0.64912 0.64874 -0.0587 

0.4 1.11302 1.08254 1.58081 0.9519 1.15827 1.16049 0.19 

0.5 1.47821 1.43095 1.54117 1.21922 1.51956 1.5241 0.30 

0.6 1.46249 1.42308 0.91405 1.19608 1.47617 1.48135 0.35 

0.7 0.95143 0.96218 -0.02474 0.87089 0.92562 0.92451 -0.12 

0.8 0.12730 0.19078 -0.89687 0.34514 0.06570 0.05931 -10.76 

0.9 -0.69543 -0.60438 -1.37258 -0.22061 -0.76685 -0.77515 1.07 

1 -1.22083 -1.14420 -1.29394 -0.66479 -1.26461 -1.27183 0.57 

 
Table 2: Differences between the methods in evaluation of acceleration (m/sec

2
) 

Time 

(sec) 

Newmark 

(linear 

acceleration) 

Newmark 

(average 

acceleration) 

Central 

difference 
Houbolt 

Proposed 

method 
Theoretical 

% error in proposed 

method with 

theoretical method 

0 0 0 0 0 0 0 0 

0.1 17.99051 17.46678 19.13820 17.99051 17.74152 17.84350 0.57153 

0.2 23.65708 23.18047 24.65705 23.65708 22.88522 23.01255 0.55329 

0.3 12.13768 12.37236 11.51982 14.68134 10.76068 10.74624 -0.13436 

0.4 -12.73042 -11.51736 -15.4826 -5.77066 -14.5787 -14.6669 0.60143 

0.5 -39.94333 -38.16181 -43.796 -29.3309 -41.4687 -41.6755 0.49604 

0.6 -56.04642 -54.67381 -58.7491 -45.8111 -56.3588 -56.5438 0.327120 
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0.7 -33.07080 -33.70149 -31.1661 -31.3653 -31.8001 -31.7017 -0.31041 

0.8 0.48835 -2.12205 6.66589 -9.905 3.10449 3.36410 7.717145 

0.9 31.95001 28.44295 39.64176 12.05375 34.70763 35.04895 0.97383 

1 50.1141 47.37246 55.43537 28.31582 51.57090 51.82845 0.49693 

 

As a second example, a lumped mass model of a nine storey shear building shown in Fig. 

4 is considered. This building is subjected to sinusoidal base acceleration with frequency of 

5  (rad/sec) and PGA=0.3g. Columns are I-shaped with sections of IPB 300, IPB 240 and 

IPB 200 being used for first to third three stories, respectively. The shortest natural period of 

this system is 0.4076 (sec). It is assumed that damping value for each storey is proportional 

to stiffness characteristics and the proportion ratio is considered 0.001. In this example, 

t = 0.1 (sec) is selected as the time increment that is less than the critical range. This 

example is also analyzed by other methods such as Newmark method, Wilson- method and 

Quadratic B-Spline Method. The displacement time-history of the 9th storey is plotted from 

time t= 0 to t=4 second in Fig. 5. This Figure shows that the results of the proposed method 

being close to the results from other methods. 

 

 
Figure 4. Model of shear building subjected to support excitation 
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Figure 5. Displacement time-history of 9th storey shown in Fig. 4 

 

In this example, 1t = 0. (sec) is selected as the time increment. The consumed time for 

the analysis is shown in the Table 3. It is noted that for different methods, the analysis time 

is computed without considering the required time for implementing input data. In fact, this 

time shows the required time for analyzing the system under mentioned method. As seen in 

Table 3, the analysis time of the proposed method is less than the others. It is another 

advantage of the proposed method. 

 
Table 3: Differences between the analysis time of the methods in evaluation of displacement 

Method Δt (sec)  Time Consuming to Analysis (sec) 

Proposed Method t = 0.1  0.030973 

Newmark Method 

(Average 

Acceleration) 

t = 0.1  0.033354 

Wilson-   t = 0.1  0.037063 

Quadratic B-

Spline Method 
t = 0.1  0.031084 

 

 

6. CONCLUSION  
 

This paper proposes a conditionally stable explicit method for linear dynamic response 

analysis of SDOF and MDOF systems; which can be used as a simple method to determine 

the response of dynamical systems to arbitrary dynamic loads. Numerical examples show 
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that the obtained response histories (displacement, velocity and acceleration) that are 

computed by the proposed method has appropriate accuracy as compared to the results from 

theoretical and other numerical time integration methods. Undoubtedly, using a second order 

polynomial to describe the acceleration, implies that a fourth order polynomial function 

approximates the displacement. Furthermore, since the proposed method computes six 

responses of the structure (i.e. two displacements, two velocities and two accelerations), the 

computational cost is reduced as compared to other time integration methods. Accuracy of 

the proposed method is appropriate in comparison to other methods. In example one, where 

the results are compared to those of the theoretical method, the average percentage of error 

in displacements and accelerations are 1.46 and 1.027, respectively. These values indicate 

that the accuracy of the proposed method is suitable. 
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